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Abstract

The liquid crystal molecule orientation is arranged by minimizing the so-called Oseen–Frank energy functional. For a
better understanding of these complicated orientation singularities, simplified models resulting from specific choices of
elastic constants are always of interest. In this paper a pseudo Newton method together with a multi-grid linear system
solver or preconditioner is used to compute the orientation of liquid crystal molecules based on a simplified Oseen–Frank
energy functional. The penalty method is used to deal with the unit-length constraint of liquid crystal molecules. The New-
ton and multi-grid methods do not converge when some parameters are small. A homotopy algorithm combined with mesh
refinement strategies in order to deal with small parameter cases is studied and is found to be very robust in computing the
solution of the model. The method is implemented to compute the orientation of liquid crystal molecules in domains of
typical shapes and with various rotational boundary conditions in 2D and 3D. Interesting singularity patterns are
observed.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Liquid crystals are a phase of matter whose order is intermediate between that of a liquid and that of a
crystal. The molecules are typically rod-shaped with a fixed length and their ordering is important to charac-
terize their microstructure. The nematic phase, for example, is characterized by the orientational order of the
constituent molecules. Nematics are the most commonly used phase in liquid crystal displays (LCDs), with
many such devices using the twisted nematic geometry.
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There is growing interest in the theory of liquid crystals among physicists and mathematicians due to
their broad applications. There exists a number of phases in liquid crystals. The study of phases and tran-
sition phenomenon between them (e.g. from nematic to smectic-A) is thus an important topic in the theory
of liquid crystals (see [10,11]). Classical Oseen–Frank theory (cf. [13]) suggests that the nematic phase of
liquid crystals can be described by a director field n, which minimizes the following Oseen–Frank energy
functional
WðnÞ ¼
Z

X
W ðn;rnÞdx;
where X � Ri, i = 2 or 3, is a bounded domain occupied by the liquid crystal sample, and
W ðn;rnÞ ¼ k1

2
jr � nj2 þ k2

2
jn � r � nj2 þ k3

2
jn�r� nj2 þ k2 þ k4

2
½trðrnÞ2 � ðr � nÞ2�:
Here the ki are elastic constants and k1, k2, k3 > 0 are splay, twist and bend constants, respectively. The molec-
ular orientation can be controlled with applied forces on the boundary. So we shall consider Dirichlet bound-
ary conditions. The last term ½trðrnÞ2 � ðr � nÞ2� will be dropped, since it is a divergence term and can be
reduced to a surface integral via integration by parts (see [17], Lemma 1.2). So we only need to consider
W ðn;rnÞ ¼ k1

2
jr � nj2 þ k2

2
jn � r � nj2 þ k3

2
jn�r� nj2: ð1Þ
As pointed out in [11] the full form of (1) is still too complex to be of practical use – either because the relative
values of the three elastic constants ki are unknown, or because the equilibrium equations derived from (1) are
prohibitively difficult to solve. Indeed, no theoretical analysis has been done to the general Oseen–Frank func-
tional. In such cases, a further simplification based on specific choices of elastic constants is often useful to
understand the orientation pattern. There are two typical simplifications. If k1 ¼ k2 ¼ k3 ¼ 1 then the
Oseen–Frank energy becomes
WðnÞ ¼ 1

2

Z
X
jrnj2 dx: ð2Þ
Together with a fixed length condition, say jnj ¼ 1, the solution is also called harmonic map from a 2D or 3D
compact manifold to a 2D circle or 3D sphere, respectively. Some basic numerical results and techniques have
been reported in [1,8,9,15]. It is also related to phase field models in dealing with moving interface and image
processing problems if changing n to a scalar phase field variable. There are also other studies on the coupling
of the simplified model (2) with flow field in 2D (see, e.g. [12,20,21]). If k2 ¼ k3 ¼ k þ k1, we can have another
simplification
WðnÞ ¼ 1

2

Z
X
½k1jrnj2 þ kjr � nj2�dx: ð3Þ
Although the assumption on the ratio of parameters ki may not be quantitatively true in various practical
situations, this simpler form of (1) resulting from the assumption is often a valuable tool to reach a qual-
itative insight into material properties such as molecule orientations. It is expected that, as k !1, the
asymptotic behavior of minimizers of (3) under suitable boundary conditions will provide a mathematical
representation of the phase transition process of liquid crystals from nematic phase to smectic-A phase
(see [16,19]). Some mathematical analysis for the limiting case of (3) is discussed in [2,3,17,18,22]. That is
why we are particularly interested in considering the limiting case that k � k1. It is also very challenging
to design appropriate numerical methods in this case since the ellipticity of the operator is largely reduced.
Some initial numerical results in simple 2D cases are reported in [14] where the direct method is used to
solve the resulting linear system.

In this paper we will focus on the simplified model (3) since not many theoretical and numerical results
are available. We will mainly consider three dimensional cases with k � k1. In 3D and, in particular, when
more nodes are needed due to the orientation singularities there is no hope to use a direct method to solve
the linear system resulted from the Newton’s iteration of this nonlinear problem. We shall use the multi-
grid method to solve the linear system or use it as a pre-conditioner for an iterative linear system solver
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(such as conjugate gradient or GMRES) since the problem is a vector elliptic equation. However, the iter-
ative method is often not convergent due to the small parameter k1=k and the small penalty parameter for
the unit length constraint. We thus propose a homotopy method on these small parameters to increase the
accuracy of the initial guess of the iterative method. It turns out that the homotopy method together with
the Newton-multigrid iteration works very robustly for this liquid crystal model. We shall first consider
the model in a square or a rectangular in 2D and then a cubic or parallelepiped domain in 3D, as well
as on a spherical or an ellipsoidal domain where the boundary is smooth. By choosing various winding
boundary data we observe various interesting orientation solutions, their singularity patterns and evolution
from a given initial guess to the steady state solution. We hope that our observations will help with the
understanding of the orientation of liquid crystal molecules and motivate further theoretical study of
the solution of this liquid crystal model. All numerical examples are solved with the PDE library
Gascoigne [7].

2. Formulation of the problems

Let X be a bounded domain of R2 or R3. We denote by C the boundary of X, and we suppose that C is
sufficiently smooth (for example, Lipschitz-continuous). Define the space H1ðXÞ ¼ ðH 1ðXÞÞi and
L2ðXÞ ¼ ðL2ðXÞÞi, i = 2 or 3, and denote � ¼ k1=k. We can write the energy functional (3) as
J �ðnÞ ¼
1

2

Z
X
½�jrnj2 þ jr � nj2�dx; 8n 2 H1ðXÞ; ð4Þ
where � should be a small positive constant. Note that n in (3) satisfies a Dirichlet boundary condition and is a
director vector, namely, its length is one. So we look for solutions in the set:
S ¼ fnjn 2 H1ðXÞ; n ¼ g on C; jnj ¼ 1a:e:g; ð5Þ

where jnj ¼ ðn2

1 þ n2
2 þ n2

3Þ
1
2. The boundary data g is a unit vector field such that S 6¼£.

With the above notation, we consider the following minimization problem
Find u 2 S; such that J �ðuÞ 6 J �ðvÞ; 8v 2 S: ð6Þ

The unit vector constraint jvj ¼ 1 makes it a non-convex minimization problem. We can have three ways to
deal with the constraint, namely projection, Lagrangian multiplier and penalty methods. We are not going to
use the method of Lagrange multipliers since it would lead us to a kind of generalized eigenvalue/eigenfunc-
tion problem which may be more complicated to solve than projection and penalty methods. The projection
method is numerically simple but its theoretical formulation involves a so-called ‘‘subgradient’’ which is not a
mathematically well-understood subject (see [14]). The penalty method is a favorable way for PDE analysts
since the resulting system is more regular to researchers and the limiting argument may possibly be applied
to study the properties of the solution. So we shall use the penalty formulation in our computation as well.

The penalty formulation of (6) reads:
Find u 2 H1
g; such that

J �ðuÞ þ 1
4g

R
Xðjuj

2 � 1Þ2 dx 6 J �ðvÞ þ 1
4g

R
Xðjvj

2 � 1Þ2 dx; 8v 2 H1
g:

(
ð7Þ
The variational formulation for the liquid crystal model is
Find u 2 H1
g; such that;

�
R

Xru : rvdxþ
R

Xðr � uÞ � ðr � vÞdxþ 1
g

R
Xðjuj

2 � 1Þu � vdx ¼ 0; 8v 2 H1
0ðXÞ;

(
ð8Þ
where g > 0 is another small parameter associated with the penalty method for the unit-length constraint. We
also note that the term associated with the curl operator can be replaced by the term associated with the grad

and div operators, since
Z
X
ðr � uÞ � ðr � vÞdx ¼

Z
X
ru : rvdx�

Z
X
ðr � uÞðr � vÞdx; 8v 2 H1

0ðXÞ: ð9Þ
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We shall use a finite element method to approximate problem (8). Suppose that X � R2 or R3. Using a quad-
rilateral (or hexahedral) finite element triangulation of X being denoted as Th ¼ fT g, we approximate H1 and
H1

0 by the finite element spaces
Vh ¼ fvh 2 C0ðXÞ; vhjT 2 Q1ðT Þ; 8T 2Thg;

and
Vgh ¼ fvh 2 Vh; vh ¼ gh on Cg;

respectively. Here Q1ðT Þ is the space of the polynomials resulting from an iso-parametric mapping of a refer-
ence element bT ¼ ½0; 1�2 or bT ¼ ½0; 1�3 respectively, to the element T of degree 6 1. Also V0h is the particular
case of Vgh with gh ¼ 0. For the case of non-polygonal boundaries we use higher order mappings of the ref-
erence element onto the computational elements T in order to reduce the approximation error along the
boundaries (see [6] for a complete description of the finite element spaces).

3. The multigrid method and homotopy

For abbreviation we write the discrete variational system of (8) (replacing the functional spaces H1
0 by V0h

and H1 by Vgh, respectively) as: finding uh 2 Vgh such that
aðuhÞðvhÞ ¼ 0; 8vh 2 V0h; ð10Þ

using the nonlinear form að�Þð�Þ. To solve this problem, we shall use a pseudo Newton method. Starting with
an initial guess u0

h (usually the interpolation of the solution on a coarser triangulation) we get iterates un
h by

successively following Algorithm 1.

Algorithm 1. Newton iteration
Require: initial guess u0

h, error tolerance s, matrix parameter a

1: for n = 0 to N do

2: calculate residual dn
h ¼ aðun

hÞð�Þ
3: calculate norm qn ¼ kdn

hk
4: if qn

6 s then

5: break
6: end if

7: if qn=qn�1 P a then

8: build system matrix Ah ¼ a0uðun
hÞð�; �Þ

9: end if

10: solve linear system Ahðunþ1
h � un

hÞ ¼ �dn
h

11: end for

Until a given tolerance s for the residual is reached in step 4, the Jacobian in step 8 of the Newton iteration
is only newly assembled, if the convergence rate of the preceding step was bad (usually we take a � 0:2). With
a0uð�Þð�; �Þ we indicate the Frechet derivative of the nonlinear form að�Þð�Þ:
a0uðuÞðw;/Þ :¼ d

dt
aðuþ twÞð/Þ

����
t¼0

: ð11Þ
The resulting linear system in step 10 of the Newton iteration will be solved using a multi-grid method due to
its fast convergence for elliptic problems. For the multi-grid iteration we are using the V-cycle with about 8
smoothing steps each for pre- and post-smoothing.

As smoother we apply a block-wise incomplete LU decomposition without any fill-in. We locally block all
degrees of freedom belonging to one mesh node. In particular the local nonlinearities due to the penalty term
demand for this coupling. For a further stabilization of the ILU decomposition we add fractions of off diag-
onal entries to the diagonal one. For coarse meshes up to about 5000 degrees of freedom a fast direct solver is
applied.
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To enhance the robustness of the linear solver, this multi-grid iteration is used as a pre-conditioner for a
conjugate gradient solver.

Even for a moderate choice of the two parameters � and g in Eq. (8) the nonlinear as well as the linear prob-
lems are a challenge to the numerical methods. For small values of the parameter �, the influence of the Lapla-
cian, hence the elliptic character is reduced and the kernel of curl gets significant. As consequence, the
convergence rate of the linear solver is worsened.

The nonlinear penalty term induces ‘‘singularities’’ to the solution. In combination with a small value of �,
very sharp fronts appear within the solution, where the orientation of the crystals turns, and the length col-
lapses to zero. These fronts are that sharp, that the solution is not educible on coarse meshes.

Algorithm 2. Homotopy Newton iteration
Require: initial guess u0

h, error tolerance s, matrix parameter a, initial homotopy parameter g0, homotopy
limit glim, homotopy control c1, c2, b.

1: for n = 0 to N do

2: calculate residual dn
h ¼ aðun

hÞð�Þ
3: calculate norm qn ¼ kdn

hk
4: if qn

6 s then

5: break

6: end if

7: if qn=qn�1
6 c1 and qn=qlast

6 c2 then

8: reduce g ¼ bg
9: calculate residual dn

h ¼ aðun
hÞð�Þ

10: calculate norm qn ¼ kdn
hk

11: set qlast ¼ qn.
12: end if

13: if qn=qn�1 P a then

14: build system matrix Ah ¼ a0uðun
hÞð�; �Þ

15: end if

16: solve linear system Ahðunþ1
h � un

hÞ ¼ �dn
h

17: end for

The immediate solution of the problem with small parameters is often not possible. Remedy might be the
usage of a time stepping scheme of a gradient flow or a hydrodynamic liquid crystal model with zero velocity
field (cf. [14,20]). However, this results in very long solving times, especially considering three dimensional
problems.

Here, we propose the combination of the Newton solver with a homotopy method: while solving the non-
linear problems we successively adjust the parameters � and g. For the control of the (homotopy-)parameters g
and � as well as the size of the meshes a detailed analysis of the Newton convergence behavior will be used.

For simplification we present out method considering one homotopy parameter g. We start with some large
value g ¼ gstart and want to reach glim. If the Newton convergence is good, that is, if the reduction rate qn=qn�1

is small, we reduce the homotopy parameter. To prevent that the method tends to an unstable solution we
further demand a certain overall reduction of the residual since the last reduction step. The homotopy Newton
iteration is described in Algorithm 2.

The parameter c1 in step 7 indicates the tolerance for ‘‘good convergence’’. We usually choose c1 � 0:1. The
second condition is necessary to assure that the Newton method converges to the correct solution. By reducing
the parameters to rapidly the solution might run into unstable local minima. We set c2 � 10�4.

The reduction factor b in step 8 is usually chosen as b � 0:5–0:75.
If the parameter g gets small (compared to the size of the mesh elements), the condition qn=qlast

6 c2 in step
7 will never be fulfilled. Then we will keep the current homotopy parameter until the Newton tolerance in step
4 is reached. On the next refinement level, a further reduction of the parameter is possible.

In the next section we will give examples for the convergence progress of this homotopy method.
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3.1. Numerical analysis of the homotopy method

We analyze the homotopy method in detail for the following configuration. Considering the 3D spherical
domain we use the boundary (and initial) conditions
Fig. 1.
residua
451 de
uxðr; h;/Þ ¼ sinðhÞ sinð2/Þ;
uyðr; h;/Þ ¼ sinðhÞ cosð2/Þ;
uzðr; h;/Þ ¼ cosðhÞ:
Starting with a prolongation of the boundary values into the domain, the classical Newton iteration ceases
work even for the relatively large choice of parameters g ¼ 0:1 and � ¼ 0:1. After two iterations, the linear
problems cannot be solved.

For our approach we start the homotopy-Newton-multigrid method with large parameters
gstart ¼ �start ¼ 0:5 on a coarse mesh with only 1551 elements. The algorithm is run until both homotopy
parameters reach values below 0.005.

In Fig. 1 we collect the progress of the homotopy Newton method. About 3–5 Newton steps are necessary
to reduce the residual qn by four digits and to yield a reduction rate qn=qn�1, such that the homotopy param-
eters are reduced according to step 8 in the algorithm.

With a smaller value of the homotopy parameters, the convergence rate of the Newton method is reduced.
Finally, we cannot satisfy the condition qn=qn�1

6 c1 at all. The Newton iteration is thus canceled by reaching
the given tolerance s. After mesh refinement the algorithm is restarted and the homotopy parameters can be fur-
ther reduced. As plotted in Fig. 1, two sweeps of the algorithm are sufficient to reach g ¼ 0:005 and � ¼ 0:005.

3.2. Mesh refinement

To cope with the small structure of the singularity pattern within the solution, local mesh refinement is
essential. However, combined with the homotopy method, it is difficult to generate meshes which are optimally
adapted to the solution. For large values of the homotopy parameters, the shape, size and location of the sin-
gularities differ from the final state. Local mesh refinement based on these wrong (better intermediate) solu-
tions would lead to meshes with refinements not suited to the problem. Thus, instead of using a feedback
process controlled by a posteriori error estimators (See [4] for the dual weighted residual method) we control
the mesh by tracking the singularity pattern.

For large values of the homotopy parameters we only use global mesh refinement. This way, we do not
introduce numerical falsification of the singularity structure. Once these parameters are small enough (for
Progress of the homotopy method. The horizontal solid lines indicate the value of the parameters g and �, the dotted lines the
ls of the Newton iteration. The first half of the plot is done on a mesh with 1 551 degrees of freedom, the second on a mesh with 11

grees of freedom.



P. Lin, T. Richter / Journal of Computational Physics 225 (2007) 2069–2082 2075
our examples we take a limit of about 0.1 for � and g) and the mesh contains at least about 10 000 elements (in
3D), we start local refinement. Here, we refine all elements, where the length of the vectors is below a certain
threshold, for example 0.7. As long as the homotopy parameters are still large and diffusion is dominant, the
regions of refinement are wider. For small values we get a very sharp resolution of the singularities without
wasting elements.

For a final mesh control we use the dual weighted residual method (See [5]) and estimate the error according
to the energy functional:
jEðuÞ � EðuhÞj; with EðuÞ ¼
Z

X
jr � uj2 þ �jruj2 þ 1

4g
ðjuj2 � 1Þ2 dx:
With the solution z 2 V 0h of the additional dual problem defined by
a0uðuÞðv; zÞ ¼ E0uðuÞðvÞ; 8v 2 V 0h; ð12Þ
where a0uðuÞðv; zÞ is again the Frechet derivative (11), now with z and / exchanged. The right hand side E0uð�Þð�Þ
is the derivative of the error functional, in our case of the energy functional:
E0uðuÞðvÞ :¼ d

dt
Eðuþ tvÞ

����
t¼0

¼
Z

X
ðr � uÞ � ðr � vÞ þ �ru : rvþ 1

g
ðjuj2 � 1Þu � vdx:
The definition of the dual problem (12) directly follows from an optimization approach for a posteriori error
estimation. See [5] for details. The dual solution z acts as a sensitivity for the regarded error functional. In our
case, z indicates regions of interest important for reaching a good accuracy in the energy. With the discrete
solution zh 2 V h of the dual problem (12) the error can be estimated as
EðuÞ � EðuhÞ ¼
1

2
qðuhÞðz� ihzÞ þ q	ðuh; zhÞðu� ihuÞf g þR

ð3Þ
h ðeÞ; ð13Þ
where q, q* are the residual of the primal and dual problem, given by
qðuÞðvÞ ¼ �aðuÞðvÞ;
q	ðu; zÞðvÞ ¼ E0uðuÞðvÞ � a0uðuÞðv; zÞ:
The remainder term R
ð3Þ
h is of third order in the error. If we approximate the interpolation errors u� ihu

(which can be done by local recovery, see [4]), the error formula (13) can be numerically expressed and local
error indicators are computable by splitting the integrals in the residuals into element-wise terms.

The solution of the discrete dual problem introduces additional numerical effort. However, the dual prob-
lem is always a linear problem and by far easier and quicker so solve than the primal one.

Considering the 3D examples presented in later sections, the savings by local mesh refinement are huge. For
the configuration p0 ¼ 1 and p1 ¼ 3 (see Fig. 9) we have used 500,000 elements in 8 refinement sweeps.

To reach the same element-size with global mesh refinement, 7.88 � 100,000,000 elements would be neces-
sary. Here the coarse mesh contains 7 elements.

4. Simulating molecule orientations of liquid crystals

In this section we will find the equilibrium solution (or molecule orientation) of the liquid crystal model
using the adaptive Newton-multigrid-homotopy finite element method discussed in the previous section.
We will first consider 2D cases with X being a square in order to compare the results of our method with exist-
ing ones. We will then give solutions for 3D cases on various 3D domains. Our numerical experience shows
that the method is very robust for this liquid crystal model.

4.1. The molecule orientation on a square slab

We consider a square domain X ¼ ð0; 1Þ � ð0; 1Þ and rotational boundary conditions u ¼ g ¼ ðcosðphÞ;

sinðphÞÞ, where p is an integer, cosðhÞ ¼ ðx� 1=2Þ=r, sinðhÞ ¼ ðy � 1=2Þ=r, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1=2Þ2 þ ðy � 1=2Þ2

q
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and x and y are taken on the boundary of the domain X. The initial values are obtained using the same for-
mula of the boundary value function g except that for the initial values ðx; yÞ is taken in the whole domain X.

The computational results with � ¼ g ¼ 0:001 are depicted in Fig. 2. In [14] the cases with p = 1, 2 and 3 are
also calculated based on the standard gradient flow plus operator splitting. The results look similar to the
results in [14], but the position of singularity is not completely the same. By calculating the energy
EðuÞ ¼ J �ðuÞ þ 1

4g

R
Xðjuj

2 � 1Þ2 we find that the equilibrium solution reported here has a lower energy. So
the adaptive Newton-multigrid-homotopy method gives a better minimizer. Another thing we observe from
our computing experience with the method is: it seems that the energy is decreasing in most cases of this New-
ton’s iterative process for various choices of � and g. To illustrate this we just record the energy sequence for
p = 2 with � ¼ g ¼ 0:003 and 0.001 and p = 3 with � ¼ g ¼ 0:001 and 0.003 in Table 1. There is only one New-
ton step in the case of p = 2 with � ¼ g ¼ 0:001 where the energy is not decreasing. All above results suggest
that our method works very well to the liquid crystal model.

4.2. Molecule orientations in typical 3D domains

We first consider a cubic domain X ¼ ½0; 1� � ½0; 1� � ½0; 1�. In [14] a 2D solution on a square domain with
the normal boundary condition was shown. The singularities took place on two diagonal lines of the square. It
is expected that in a 3D cubic domain with the normal boundary condition singularities would take place on
the diagonal surfaces between four diagonal lines of the cube. Fig. 3 depicts the solution and shows that the
expectation is indeed correct. Note that in all 3D figures below you will see some black regions. They are the
iso-surface at the arrow size = 0.2. Since near the singularity region our unit length constraint for the arrow
size cannot be maintained well and the arrow size usually drops from one to something close to zero. So the
iso-surface with the arrow size = 0.2 may help to characterize the singularity.

In a 2D rectangular domain with the normal boundary condition, do singularities still locate at diagonal
lines of the domain? In [14] the computational results show that this is not the case. The singularity pattern
Fig. 2. Director fields on a square liquid crystal slab with p = 1, 2, 3, 4, 5 and 6.



Table 1
Decary of the energy throughout the Newton iteration for different boundary conditions and different values for � and g

Number of Newton iterations Energies with p = 2 Energies with p = 3

� ¼ g ¼ 0:003 � ¼ g ¼ 0:001 � ¼ g ¼ 0:003 � ¼ g ¼ 0:001

1 1.727736563 2.639535561 3.536462942 127.1845346
2 1.702991477 2.621166 3.367788263 27.72430021
3 1.65331395 2.571956713 3.344516427 8.93841186
4 1.648313641 2.432146793 3.335869516 5.498112348
5 1.648010467 2.386859543 3.33440511 5.148077563
6 1.648007077 2.151061622 3.333985585 4.88226389
7 1.648007076 2.038938299 3.333856107 4.657143667
8 1.648007076 1.95062986 3.333789858 4.367119492
9 1.91007785 3.333778201 4.09221224

10 1.905052784 3.333777645 3.951007037
11 1.90042532 3.333777643 3.908572077
12 1.897019366 3.906280193
13 1.891085774 3.906250584
14 2.312036616 3.906250556
15 1.825133463 3.906250556
16 1.739602113
17 1.727318257
18 1.726643006
19 1.726636736
20 1.726636735

Fig. 3. Molecule orientation on a cube with the normal boundary (right: a cross-section look).
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includes half diagonal lines of squares corresponding to two shorter sides plus the central line connecting them
(see the left figure of Fig. 4). In a 3D parallelepiped domain X ¼ ½0; 2� � ½0; 1� � ½0; 1�, we might expect from
the 2D result that singularities are on diagonal surfaces of cubes corresponding to two smaller side surfaces of
the domain plus the central surface connecting them (see the right figure of Fig. 4). For convenience of descrip-
tion later we will call this ‘‘expected’’ possible molecule orientation as a 2D-induced state. However, it seems
that the 3D case may be essentially different when � and g are small. The molecule orientation we obtain is not
the same as the 2D-induced state.

The molecule orientation we obtain is depicted in Fig. 5. To show that our computed state is more likely to
be true (i.e. having lower energy) than the 2D induced state (i.e. the right figure in Fig. 4) we can compute the
energy J� as defined in (4) or J� plus the penalty term (i.e. the energy E defined before Eq. (12)) for these two
different molecule orientations. Taking � ¼ g ¼ 0:005 we list the energies in Table 2. We see that our computed
state is at a much lower energy state although it gives a quite different singularity pattern from the 2D induced
one. We can actually use the 2D induced state as the initial guess of the Newton’s method and observe that
after ten iterations the Newton method converges to our computed state again with a lower energy. We record
singularity patterns in the middle cross-sectional plane at the zeroth, first, second, and tenth iterations below
in Fig. 6 to see how the singularity pattern in the middle plane is formulated.



Fig. 4. The molecule orientation in a 2D rectangular with the normal boundary condition and the 2D induced molecule orientation in a
3D parallelepiped domain.

Fig. 5. The computed molecule orientation in a 3D parallelepiped domain.

Table 2
Energies for the induces initial state and for the computed state for the parallelelepiped domain using small values of g and �

Molecule orientations Energy J� Energy E

The 2D induced state 29.951144 32.225007
The computed state 3.584933 5.653934
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The elliptic or ellipsoidal domain is another interesting case. Unlike rectangular or parallelepiped domains
it has a smooth boundary. For the purpose of comparison we depict the molecule orientations in an ellipse and
an ellipsoid with the normal boundary condition (see Fig. 7). In [18] the asymptotic behavior of minimizers of
the functional (6) is studied provided that r� u ¼ 0. They found that for the 2D elliptic domain the defect set
(singularities) is a straight line segment ending at centers of curvature of oX. In [14] this singularity line is not
clearly seen perhaps because � and mesh size are not small enough. With the adaptive homotopy technique
developed here we are able to largely reduce � and mesh size and we do observe the singularity line segment
in the left figure of Fig. 7. In the ellipsoid we see such a singularity line as well. So our computational result
may provide some evidence that in the limiting case a minimizer may indeed be non-rotational (i.e.
r� u ¼ 0).

It would also be interesting to see 3D molecule orientations and their singularity patterns under 3D rota-
tional boundary conditions u ¼ ðsinðp0hÞ sinðp1/Þ; sinðp0hÞ cosðp1/Þ; cosðp0hÞÞ, where
sinðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
r

; cosðhÞ ¼ z
r
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
;

sinð/Þ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ; cosð/Þ ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ;



Fig. 6. Formation of the singularity pattern in the middle plane starting from the 2D induced state.

Fig. 7. Molecule orientations in an ellipse and an ellipsoid (including a cross-section look of the ellipsoidal case at the right) with the
normal boundary condition.

Fig. 8. Molecule orientations on a spherical liquid crystal domain with p0 = 1, 2 and 3 and p1 = 1 (bottom: a cross-section look of the
singularity pattern).
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Fig. 9. Molecule orientations on a spherical liquid crystal domain with p0 = 1 and p1 = 2 and 3 (bottom: a cross-section look of the
singularity pattern).

Fig. 10. Molecule orientations on a cubic liquid crystal domain with p0 = 2 and 3 and p1 = 1 (bottom: a cross-section look of the
singularity pattern).
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p0 and p1 are integers and ðx; y; zÞ taken values on the boundary. The initial values are obtained by using the
same formula of the boundary condition but ðx; y; zÞ being taken values inside of the domain. We compute
the solution in both spherical (smooth) (see Figs. 8 and 9) and parallelepiped (non-smooth) (see Figs. 10
and 11) domains. We shall use approximately 500,000 finite elements and take � and g as small as 0.005
in all the 3D computation. The singularity patterns for 3D liquid crystals may be quite different from
2D ones.



Fig. 11. Director fields on a cubic liquid crystal domain with p0 = 1 and p1 = 2 and 3 (bottom: a cross-section look of the singularity
pattern).
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